Cscl 5980 Spring 2020

LevelDB Introduction

An Key-Value Store Example

Projects Using LevelDB

@ Google

Gougle chrome BIQTable
i i
sriak e

TYCOON

LevelDB

* “LevelDB is an open source on-disk key-value store

written by Google fellows Jeffrey Dean and Sanjay
Ghemawat.” — Wikipedia

* “LevelDB is a light-weight, single-purpose library for
persistence with bindings to many platforms.” —
leveldb.org

AP]

e Get, Put, Delete, Iterator (Range Query).

Key-Value Data Structures

* Hash table, Binary Tree, B*-Tree

"when writes are slow, defer them and
do them in batches” *

*Dennis G. Severance and Guy M. Lohman. 1976.

Log-structured Merge (LSM) Tree

O’Neil, P.,, Cheng, E., Gawlick, D., & O’Neil, E. (1996).

Two Component LSM-Tree

C1 tree Co tree
| | |
| | |
isk Memory

Figure 2.1. Schematic picture of an LSM-tree of two components

K+1 Components LSM-Tree

Ck tree Co. Cq tree Co tree
merge merge merge
| | |
Disk Memory

Figure 3.1. An LSM-tree of K+1 components

Rolling Merge

C4 tree Cp tree
I | |
I | |
Disk Memory
]
-"
____-_'_—A_“"—-—-__
m N ‘l' u]
a1 O O O 0 O O O

Figure 2.2. Conceptual picture of rolling merge steps, with result written back to disk

From LSM-Tree to LevelDB

e—— LO (BME)

J

R merge sort L1 (10MB) J :,J
2o () () O O O
seeey) () L) () L_J

= . ware - () O O OO O

D SSTable files D memtable . immutable

(a) LSM-tree (b) LevelDB
Lu, L., Pillai, T. S., Arpaci-Dusseau, A. C., & Arpaci-Dusseau, R. H. (2016).

LevelDB Data Structures

¢ Log f||e Mmemaory
e Memtable sk
LO (BMB)
* Immutable Memtable
LI (1OMB)
* SSTable (file) 12 (100ME}
 Manifest file L3 (IGB)

werey () (O) OJ O O

D SSTable files O memtable . immutable
(b) LevelDB

Archival Storage

Outline

* Archival Storage
- archival
- backup vs archival
* Long-term data retention
- architecture and technologies
- cloud for archival
- Self-contained Information Retention Format

What is archival storage?

*In computers, archival storage
is storage for data that may not be

actively needed but is kept for

possible future use or for record-
keeping purposes.

e Archival storage is often provided
using the same system as that used
for backup storage. Typically,
archival and backup storage can be
retrieved using a restore process [1].

The Need for Digital Preservation SNIA—-I

Global Education

Health Insurance Portability and

> Regulatory compliance and legal issues Accountability Act

+ Sarbanes-Oxley, HIPAA, FRCP, intellectual property litigation
> Emerging web services and applications

+« Email, photo sharing, web site archives, social networks, blogs

> Many other fixed-content repositories
+« Scientific data, intelligence, libraries, movies, music

M&E

Healthcare
T ——

Scientific and Cultural

for ever

20 to
43 years of age

for ever

SIRF: Self-contained Information Retention Format 7
Approved SMIA Tutonal @ 2015 Storage Networking Industry Association. All Rights Reserved.

An Archival Storage System

* A high-end computing environment includes a 132-petabyte
tape storage system that allows science and engineering users
to archive and retrieve important results quickly, reliably, and
securely (NASA)

* 44 PB current unique data stored
* SGI

Backups and Archives

* Backups are for recovery

* Archives are for discovery and preservation

Storage Perspective: archival application

e Data archiving is the process of moving data that is no longer actively
used to a separate data storage device for long-term retention.

e Most are write once, but if needed, it is crucial

Backup and archiving at a glance

Issue Backup Archiving

What is it? Protection for system and data "live | Records of inactive document
state" "steady state"

Why use it? Recovery" restore business Discovery: produce evidence to

operations after data loss,

interruption, or disaster

meet legal, regulatory, and policy

obligations

Who wants it?

Business stakeholders—CEO,

shareholders, your boss

Public stakeholders—courts,

regulators

What's in it?

Images in full operational context

Individual objects, especially email

How many are there?

Many: original left in place plus

multiple point-in-time copies

One: single global instance -
originals replaced by links, or
removed altogether from primary

storage

Backup and disaster recovery requirements

* High media capacity
* High-performance read/write streaming

* Low storage cost per GB

Archive requirements

e Data authenticity

* Extended media longevity

* High-performance random read access
* Low total cost of ownership

Long Term Data Retention — 5 Key
Considerations

1. Business and Regulatory Requirements Demand a Long-term Plan
2. Manage and Contain Your Total Cost of Ownership (TCO)
3. Encrypt Your Data for Secure Long-term Retention

4. Weigh the Environmental Impacts and Minimize Power and Cooling
Costs

5. Simplify Management of the Entire Solution

Disk scrubbing

* Drives are periodically accessed to detect drive failure.
By scrubbing all of the data stored on all of the disks,
we can detect block failures and compensate for them
by rebuilding the affected blocks.

The two-tiered data retention

Backup
Applications

Data Domain Controlle

Active tier Retentton unit O Retention unit 1 Retention unit 2

B

‘VJ Oldest
| eg,S0days

e

Older
g Recent

7 years +

The two-tiered architecture enables administrators to
deploy a short-term active tier for fast ingest of backup
data, and a retention tier for cost-effective long-term
backup retention [7] (Data Domain).

The Emergence of a New Architecture for Long-
term Data Retention

High

Time to Last Byte

Low
A€

Low Time to First Byte High

* By taking advantage of the tape layer, use cases like
archiving, long-term retention and tiered storage (where
70+% of the data is stale) can live on a low-cost storage
medium like tape.

* By leveraging Flash/SSD, each use case doesn’t suffer the
typical tape performance barriers.

File Systems

Files
Directories
File system implementation
Example file systems

Long-term Information Storage

1. Must store large amounts of data

2. Information stored must survive the termination
of the process using it

3. Multiple processes must be able to access the
information concurrently

File Naming

Extension Meaning

file.bak Backup file

file.c C source program

file.qif Compuserve Graphical Interchange Format image
file.hlp Help file

file.html World Wide Web HyperText Markup Language document
file.jpg Still picture encoded with the JPEG standard
file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard

file.o Object file (compiler output, not yet linked)

file.pdf Portable Document Format file

file.ps PostScript file

file.tex Input for the TEX formatting program

file.txt General text file

file.zip Compressed archive

Typical file extensions.

28

File Structure

1 Byte

Ve

(a)

1 Record
rd
Ant Fox Pig
Cat || Cow || Dog Goat Lion" Owl Pony || Rat ||Worm
Hen || Ibis ||Lamb

(b)

 Three kinds of files

* byte sequence
* record sequence

* free

()

29

File Types

Magic number

Text size

Data size
BSS size
Symbol table size

Entry point

727

Flags

'<7 Header 4>|

2 Text e

~N

~ Data

L Relocation
T bits

Symbol
T table

Module
name
Header
Date
Object Owner
module
Protection
Size
Header
Object
module
Header
Object
module

(@

(a) An executable file (b) An archive

30

File Access

* Sequential access
* read all bytes/records from the beginning
* cannot jump around, could rewind or back up
e convenient when medium was mag tape

* Random access
* bytes/records read in any order
* essential for data base systems
* read can be ...
* move file marker (seek), then read or ...
* read and then move file marker

File Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner
Read-only flag O for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASClI/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file has last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Possible file attributes

32

File Operations

1. Create 7. Append

2. Delete 8. Seek

3. Open 9. Get attributes
4. Close 10.Set Attributes
5. Read 11.Rename

6. Write

An Example Program Using File System Calls (1/2)

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fcntl.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv(]); /* ANSI prototype */
#define BUF _SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT _MODE 0700 /* protection bits for output file */

Int main(int argc, char *argvl])

{

int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF _SIZE];

if (argc = 3) exit(1); /* syntax error if argc is not 3 */

34

An Example Program Using File System Calls (2/2)

/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */

if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT _MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {
rd__count = read(in_fd, buffer, BUF _SIZE); /* read a block of data */

if (rd__count <= 0) break; /* if end of file or error, exit loop */
wt__count = write(out__fd, buffer, rd__count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */

}

/* Close the files */

close(in_fd);

close(out_fd);

if (rd_count == 0) /* no error on last read */
exit(0);

else
exit(5); /* error on last read */

Memory-Mapped Files

Program Program

text text abc

Data Data

Xyz

(a) (b)

(a) Segmented process before mapping files
into its address space

(b) Process after mapping
existing file abc into one segment
creating new segment for xyz

Directories
Single-Level Directory Systems

<—Root directory

B ®E T

* A single level directory system
e contains 4 files
* owned by 3 different people, A, B, and C

Cloud Storage and Big Data

e OpenStack

* VM vs. Container

* Durability, Reliability and Availability
* Private vs. Public Cloud

Project: Storage Systems Prototype with I/O Hints

g

BuildingH
ints
Mapping
Table

ints

wtent Data Structures

SCSI Device Driver

I/O Requests

~

Ve

N3

J

(&

SCSI Hints

bio

J

A4

able Hints Mapping

Table

Logical Volu

Device M
evice y(ﬁ

Linear devices

in Client

Clo

me

Cloud

Objects
Prefetch

Parallel File Systems and |O
Workload Characterization

Why Is This Important?

" Workload Characterization
> Key to performance analysis of storage subsystems.

> Key to the implementation of simulators, as captured/synthesized workloads are key
inputs.

" Key Issues

> Lack of widely available tool sets to capture file system level workloads for parallel
file systems

> Lack of methods to characterize parallel workloads (for parallel file systems)

> Lack of methods to synthesize workloads accurately at all levels (Block, File, etc)

> Understanding of how existing workloads scale in the exascale regime is lacking

Goals and Objectives

A detailed understanding and survey of existing methods in file system
tracing, trace replaying, visualization, synthetic workload generators at the
file system input levels, and existing mathematical models

Tools, techniques and methods to analyze parallel file system input traces
(require to know more about OS, meta-data server, and applications)

Models to characterize the above workloads traces (Using statistical and
analytical methods)

Synthetic workload generation at the parallel file system input level — which
will be used as inputs to the simulator.

Understanding of the interactions of workloads at the file system level and
making the file system aware of the workloads

Block-Level Workload Characterization

Storage system performance cannot be determined by the system alone.

o | System * P=f(S, WA
B Performance _
et s Storage Possible
- System Workload Space
W 10 Workload Real Workload
/\ Space
N system performance 7) | ® IMproving system for all possible
NS ﬁ> St workload space is difficult.
* If we know the real workload space

O

\ .

S we can improve performance more
Storage System (S) efﬁ cle ntly

Framework of I/O Workload Characterization

Original _ { Replayed
trace trace

Workload
Parameters

Adjusted
Parameters

Synthetic trace

Tiered Storage Research

P
. File Users |

\%_T P,

I/O Storage Subsystem

et q . n—q _
Units of ||I FHEH - —H 5+ - =
RAIDS Sets < [H EH -~ EH 4 E°H E} =
=2l & e &
~ o Active—Tier . Passive—Tier

A M

,__’Tﬁ_—ﬂ—_ﬁ

. Tape/Library

P2T-Migrate Tjer 3

W

]

Data Migration, Duplication, and
Deduplication

Tiered Storage Management

When a file is accessed, we may want to move related data
level up to a faster storage provisioning potential near future
access requests

Duplication level optimal for a long-term storage

Dedup algorithm and how to preserve it long-term (need to
make sure we know how to get the data back)

How to find the right balance between duplication and dedup?
How do we validate that data is stored the we think it is?

Imperfect dedup may be what we are looking for. However,
what do we do if we want to have different levels of backup for
different data.

DNA-Storage

Background

DNA Basics

What Does DNA Look Like?

D = Deoxyribose
(sugar)

P = Phosphate

oe ¢ Hydrogen
Bond

https://www.genome.gov/Pages/Education/Modules/BasicsPresentation.pdf

Background

PCR: polymerase chain reaction

* PCR: a method for exponentially amplifying the concentration of selected
sequences of DNA within a pool.

* Primers: The DNA sequencing primers are short synthetic strands that
define the beginning and end of the region to be amplified.

Polymerase chain reaction - PCR

original DNA
to be replicated 5 3 5
1

(58]
-

/ N\ e0e

s HE
AVATAVA

| DA primer 3’ 5 3 5

nucleotide

o Denaturation at 94-96"C

a Annealing at ~68°C

© Elongationatca 72°C https://en.wikipedia.org/wiki/Polymerase chain reaction

https://en.wikipedia.org/wiki/Polymerase_chain_reaction

Background

DNA Synthesis

* Arbitrary single-strand DNA sequences can be synthesized chemically,
nucleotide by nucleotide.

* Synthesizing error limits the size of the oligonucleotides (< 200

nucleotides).
* truncated byproducts

 Parallel synthesize: 1015 different oligonucleotides.

Background

DNA sequencing

 The DNA strand of interest serves as a template for PCR.
* Fluorescent nucleotides are used during this synthesis process.

e Read out the complement sequence optically.

* Read error. (~1%)

A DNA Storage System

* Very dense and durable archival storage with access times of many hours to days.

* DNA synthesis and sequencing can be made arbitrarily parallel, making the
necessary read and write bandwidths attainable.

Overview

* basic unit: DNA strand that is roughly 100-200 nucleotides long, capable of storing
50-100 bits total.

» data object: maps to a very large number of DNA strands.

* The DNA strands will be stored in pools ONAstorage lbrary %
DF[\}a OOOOOOOOD-_'
* stochastic spatial organization T e 000000000 oA
¢ ONONONONONONONONS
e structured addressing: impossible Therﬁ]%ffyc.er *—8 8 g g g g g g 8
Data ¢ J O00000000
* address: embedded into the data stored in a strand «2Y" | pna sequencer g g g g g g g g g

Figure 3. Overview of a DNA storage system.

Interface and Addressing

* Object Store: Put(key, value) / Get(key).

 Random access: mapping a key to a pair of PCR primers.

* write: primers are added to the strands
* read: those same primers are used in PCR to amplify only the strands with the desired keys.

» Separating the DNA strands into a collection of pools:

* primers reacts.
* the chances of the sample contains all the desired data.

System Operation

~— DNA Storage System 2
Map to Primer
Sequence
key ———<' ATCCGTATC
foo. txt Encode as High
Bits of Address
N‘
Translate to Encode into Assemble Synthesize .
value — . e — — 1 DNA Library
1101000100 Nucleotides sarcect Fragments & Sequences == Sequences
(a) The write process performs put (key, wvalue), generating a DNA library.
~— DNA Storage System \
ey ———> M vence. " Primers.
foo. txt y
|
\ g selected strands pesereerieeny
are amplified e
. o PCR . -
DNA Library % comtaining sever > Amplification ——— Sequencing — Decode » value
key,value pairs 1101000100..

(b) The read process performs get (key) on a DNA library, returning the value.

Figure 4. Overview of a DNA storage system operation as a key-value store.

Encoding

* Base 4 encoding: 00, 01, 10, 11 =>A, T, G, C.
* Error prone: synthesis, PCR, sequencing (substitutions, insertions, and deletions of nucleotides)

e Base 3 + Huffman code + rotation code

Previous Nucleotide

R ®O OO
Binary data | 51010000|01101111|01101100|21111001|01100001| 00111011 £ o 0 @ @ @ @
Base 3 12011 02110| e@2101| 222111 01112 222021 ag
oo 21100 ® 0
-
relife]
DNA 1" Gceag| TeaGT| ATCGA| TecTeT| AGAGe| ATGTGA S 2 @ @ @ @
nucleotides

(a) Translating binary data to DNA nucleotides via a Huffman code. (b) A rotating encoding to nucleotides avoids homopolymers (repe-

titions of the same nucleotide), which are error-prone.

Data Format

— [T O - —

|

Input Nucleotides UCTACGCTCGAGTGATACGAP\TGCGTCGTACTACGTCGTGTACGTA....

L

Output Strand 5" |TCTACGATC |A| TCTACGCTCGAGTGATACGA | TCTACG [A|CCAGTATCA |3’

Primer S Payload Address S Primer
Target Target

Figure 6. An overview of the DNA data encoding format.
After translating to nucleotides, the stream 1s divided into
strands. Each strand contains a payload from the stream,
together with addressing information to identify the strand
and primer targets necessary for PCR and sequencing.

Adding Redundancy

Input
Nucleotides

TCTACGCTCGAGT GATACGAATGCGTCGTACTACGTCGTGTACGT)

Output | | | | | | |
Strands | | | | | | |

Figure 7. An encoding proposed by Goldman et al. [10]. The
payloads of each strand are overlapping segments of the input
stream, such that each block in the stream appears in four
distinct strands.

Goldman Encoding

Input

. TCTACGCTCGAGTGATACGAATECGTCGTACTACGTCGTS|
Nucleotides

XOR Parity | i | i |
Strand

Figure 8. Our proposed encoding incorporates redundancy
by taking the exclusive-or of two payloads to form a third.
Recovering any two of the three strands is sufficient to recover
the third.

XOR Encoding

