
Csci 5980 Spring 2020

LevelDB Introduction

An Key-Value Store Example

Projects Using LevelDB

LevelDB

• “LevelDB is an open source on-disk key-value store
written by Google fellows Jeffrey Dean and Sanjay
Ghemawat.” – Wikipedia

• “LevelDB is a light-weight, single-purpose library for
persistence with bindings to many platforms.” –
leveldb.org

API

•Get, Put, Delete, Iterator (Range Query).

Key-Value Data Structures

• Hash table, Binary Tree, B+-Tree

*Dennis G. Severance and Guy M. Lohman. 1976.

"when writes are slow, defer them and
do them in batches” *

Log-structured Merge (LSM) Tree

O’Neil, P., Cheng, E., Gawlick, D., & O’Neil, E. (1996).

Two Component LSM-Tree

K+1 Components LSM-Tree

Rolling Merge

From LSM-Tree to LevelDB

Lu, L., Pillai, T. S., Arpaci-Dusseau, A. C., & Arpaci-Dusseau, R. H. (2016).

LevelDB Data Structures

• Log file

• Memtable

• Immutable Memtable

• SSTable (file)

• Manifest file

Archival Storage

Outline

• Archival Storage

- archival

- backup vs archival

• Long-term data retention

- architecture and technologies

- cloud for archival

- Self-contained Information Retention Format

What is archival storage?

• In computers, archival storage
is storage for data that may not be
actively needed but is kept for
possible future use or for record-
keeping purposes.

• Archival storage is often provided
using the same system as that used
for backup storage. Typically,
archival and backup storage can be
retrieved using a restore process [1].

Health Insurance Portability and
Accountability Act

An Archival Storage System
• A high-end computing environment includes a 132-petabyte

tape storage system that allows science and engineering users
to archive and retrieve important results quickly, reliably, and
securely (NASA)

• 44 PB current unique data stored

• SGI

Backups and Archives

• Backups are for recovery

• Archives are for discovery and preservation

Storage Perspective: archival application

• Data archiving is the process of moving data that is no longer actively
used to a separate data storage device for long-term retention.

• Most are write once, but if needed, it is crucial

Backup and archiving at a glance

Backup and disaster recovery requirements

• High media capacity

• High-performance read/write streaming

• Low storage cost per GB

Archive requirements

• Data authenticity

• Extended media longevity

• High-performance random read access

• Low total cost of ownership

Long Term Data Retention – 5 Key
Considerations
1. Business and Regulatory Requirements Demand a Long-term Plan

2. Manage and Contain Your Total Cost of Ownership (TCO)

3. Encrypt Your Data for Secure Long-term Retention

4. Weigh the Environmental Impacts and Minimize Power and Cooling
Costs

5. Simplify Management of the Entire Solution

Disk scrubbing

•Drives are periodically accessed to detect drive failure.
By scrubbing all of the data stored on all of the disks,
we can detect block failures and compensate for them
by rebuilding the affected blocks.

The two-tiered data retention

The two-tiered architecture enables administrators to
deploy a short-term active tier for fast ingest of backup
data, and a retention tier for cost-effective long-term
backup retention [7] (Data Domain).

The Emergence of a New Architecture for Long-
term Data Retention

• By taking advantage of the tape layer, use cases like
archiving, long-term retention and tiered storage (where
70+% of the data is stale) can live on a low-cost storage
medium like tape.

• By leveraging Flash/SSD, each use case doesn’t suffer the
typical tape performance barriers.

26

File Systems

Files

Directories

File system implementation

Example file systems

27

Long-term Information Storage

1. Must store large amounts of data

2. Information stored must survive the termination
of the process using it

3. Multiple processes must be able to access the
information concurrently

28

File Naming

Typical file extensions.

29

File Structure

• Three kinds of files
• byte sequence
• record sequence
• tree

30

File Types

(a) An executable file (b) An archive

31

File Access

• Sequential access
• read all bytes/records from the beginning
• cannot jump around, could rewind or back up
• convenient when medium was mag tape

• Random access
• bytes/records read in any order
• essential for data base systems
• read can be …
• move file marker (seek), then read or …
• read and then move file marker

32

File Attributes

Possible file attributes

33

File Operations
1. Create
2. Delete
3. Open
4. Close
5. Read
6. Write

7. Append
8. Seek
9. Get attributes
10.Set Attributes
11.Rename

34

An Example Program Using File System Calls (1/2)

35

An Example Program Using File System Calls (2/2)

36

Memory-Mapped Files

(a) Segmented process before mapping files
into its address space

(b) Process after mapping
existing file abc into one segment

creating new segment for xyz

37

Directories
Single-Level Directory Systems

• A single level directory system
• contains 4 files

• owned by 3 different people, A, B, and C

Cloud Storage and Big Data

• OpenStack

• VM vs. Container

• Durability, Reliability and Availability

• Private vs. Public Cloud

Project: Storage Systems Prototype with I/O Hints

Cache Buffer

QoS-aware IO calls

File System
QoS to hints

SCSI Device Driver

Generic Block Layer

Logical Volume vol1

Linear devices

DM Table Hints Mapping
Table

Cloud

I/O Requests
SCSI Hints

HDDSSD

Persistent Data Structures

bio

Device Mapper

Data Blocks

Classifier

Thin Client

Hints
generation

BuildingH
ints
Mapping
Table

Cloud
Objects
Prefetch

Logical Volume

Parallel File Systems and IO
Workload Characterization

Why Is This Important?
 Workload Characterization

 Key to performance analysis of storage subsystems.

 Key to the implementation of simulators, as captured/synthesized workloads are key
inputs.

 Key Issues

 Lack of widely available tool sets to capture file system level workloads for parallel
file systems

 Lack of methods to characterize parallel workloads (for parallel file systems)

 Lack of methods to synthesize workloads accurately at all levels (Block, File , etc)

 Understanding of how existing workloads scale in the exascale regime is lacking

Goals and Objectives
• A detailed understanding and survey of existing methods in file system

tracing, trace replaying, visualization, synthetic workload generators at the
file system input levels, and existing mathematical models

• Tools , techniques and methods to analyze parallel file system input traces
(require to know more about OS, meta-data server, and applications)

• Models to characterize the above workloads traces (Using statistical and
analytical methods)

• Synthetic workload generation at the parallel file system input level – which
will be used as inputs to the simulator.

• Understanding of the interactions of workloads at the file system level and
making the file system aware of the workloads

Block-Level Workload Characterization

P
System
Performance

S
Storage
System

W IO Workload

System Performance (P)
Throughput (MB/S)
IOPS (operations/s)

Latency (s)

IO Workload (W)
Operation Disk Address Size Time
………………………………………………

………………………………………………

………………………………………………

Storage System (S)Storage System (S)

• P=f(S, W)

• Improving system for all possible
workload space is difficult.

• If we know the real workload space
we can improve performance more
efficiently.

Storage system performance cannot be determined by the system alone.

Possible

Workload Space

Real Workload

Space

Framework of I/O Workload Characterization

Original
trace

Workload
Parameters

Synthetic trace

Workload
characterization

Adjusted
Parameters

Parameter
adjustment

Workload
generation

Replay by
workload
replayer

Replayed
trace

Changes to
applications and /or

system (either host or
storage)

Arrival pattern, File/Data
access pattern in the
form of parameters

Replay on
same/different
storage system

Action

Output

Comparison 2

Comparison 1

Comparison 3

Tiered Storage Research

• Tiered Storage Management

• When a file is accessed, we may want to move related data
level up to a faster storage provisioning potential near future
access requests

• Duplication level optimal for a long-term storage

• Dedup algorithm and how to preserve it long-term (need to
make sure we know how to get the data back)

• How to find the right balance between duplication and dedup?
How do we validate that data is stored the we think it is?

• Imperfect dedup may be what we are looking for. However,
what do we do if we want to have different levels of backup for
different data.

Data Migration, Duplication, and
Deduplication

DNA-Storage

Background
DNA Basics

https://www.genome.gov/Pages/Education/Modules/BasicsPresentation.pdf

Background

• PCR: a method for exponentially amplifying the concentration of selected
sequences of DNA within a pool.

• Primers: The DNA sequencing primers are short synthetic strands that
define the beginning and end of the region to be amplified.

PCR: polymerase chain reaction

https://en.wikipedia.org/wiki/Polymerase_chain_reaction

https://en.wikipedia.org/wiki/Polymerase_chain_reaction

Background

• Arbitrary single-strand DNA sequences can be synthesized chemically,
nucleotide by nucleotide.

• Synthesizing error limits the size of the oligonucleotides (< 200
nucleotides).
• truncated byproducts

• Parallel synthesize: 10^5 different oligonucleotides.

DNA Synthesis

Background

• The DNA strand of interest serves as a template for PCR.

• Fluorescent nucleotides are used during this synthesis process.

• Read out the complement sequence optically.
• Read error. (~1%)

DNA sequencing

A DNA Storage System
• Very dense and durable archival storage with access times of many hours to days.

• DNA synthesis and sequencing can be made arbitrarily parallel, making the
necessary read and write bandwidths attainable.

Overview
• basic unit: DNA strand that is roughly 100-200 nucleotides long, capable of storing

50-100 bits total.

• data object: maps to a very large number of DNA strands.

• The DNA strands will be stored in pools

• stochastic spatial organization

• structured addressing: impossible

• address: embedded into the data stored in a strand

Interface and Addressing
• Object Store: Put(key, value) / Get(key).

• Random access: mapping a key to a pair of PCR primers.
• write: primers are added to the strands

• read: those same primers are used in PCR to amplify only the strands with the desired keys.

• Separating the DNA strands into a collection of pools:
• primers reacts.

• the chances of the sample contains all the desired data.

System Operation

Encoding
• Base 4 encoding: 00, 01, 10, 11 => A, T, G, C.

• Error prone: synthesis, PCR, sequencing (substitutions, insertions, and deletions of nucleotides)

• Base 3 + Huffman code + rotation code

Data Format

Adding Redundancy

Goldman Encoding XOR Encoding

